

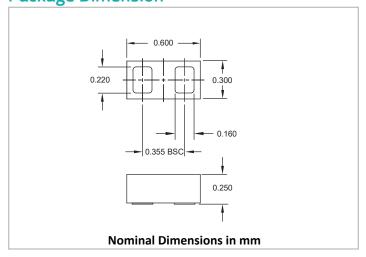
Description

HClamp® TVS diodes are designed to protect sensitive electronics from damage or latch-up due to ESD. These state-of-the-art devices utilize solid-state silicon-avalanche technology for superior clamping performance and DC electrical characteristics.

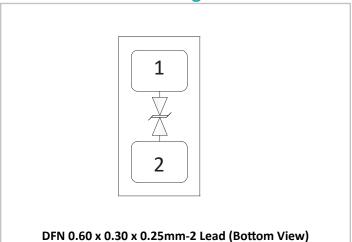
HClamp2481ZA is in a DFN $0.60 \times 0.30 \times 0.25$ mm 2-Lead package. It gives the designer the flexibility to protect single lines in applications where arrays are not practical. HClamp2481ZA also provides high surge current capability (4.5A, tp=8/20 μ s). They have been optimized for ESD protection of data and power lines in cellular phones and other portable electronics.

Features

- Transient protection for VBus and data lines to
 - IEC 61000-4-2 (ESD): ±30kV (Contact), ±30kV (Air)
 - IEC 61000-4-5 (Lightning): 4.5A (tp = 8/20µs)
- Ultra-small package
- Protects one power or data line
- Low ESD clamping voltage
- Working voltage: 24V
- Capacitance: 5.5pF (maximum)
- Low leakage current
- Low dynamic resistance: 0.4Ω (typ)
- Solid-state silicon-avalanche technology


Applications

- Cellular Handsets & Accessories
- Wearables
- Industrial Equipment
- Portable electronics


Mechanical Characteristics

- Package: DFN 0.60 x 0.30 x 0.25mm 2-Lead
- Pb-Free, Halogen Free, RoHS/WEEE compliant
- Lead Finish: Pb-Free
- · Marking: Marking code
- · Packaging: Tape and Reel

Package Dimension

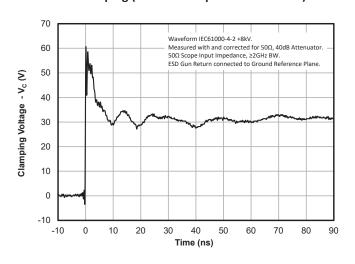
Schematic and Pin Configuration

Absolute Maximum Rating

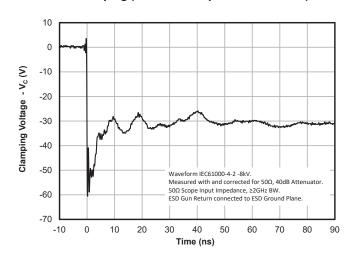
RATING	SYMBOL	VALUE	UNITS	
Peak Pulse Power (tp = 8/20μs)	$P_{_{PK}}$	195	W	
Peak Pulse Current (tp = 8/20μs)	l _{pp}	4.5	Α	
ESD per IEC 61000-4-2 (Contact) ⁽¹⁾	V	±30	la /	
ESD per IEC 61000-4-2 (Air) ⁽¹⁾	V_{ESD}	±30	kV	
Operating Temperature	T _J	-40 to +85	°C	
Storage Temperature	$T_{_{STG}}$	-55 to +150	°C	

Electrical Characteristics

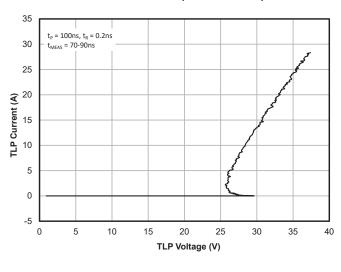
T=25°C unless otherwise specified

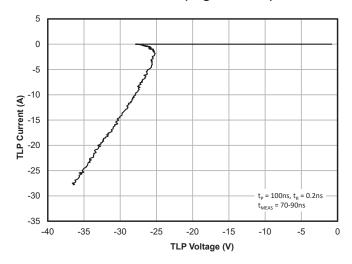

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse Stand-Off Voltage	$V_{_{\mathrm{RWM}}}$				24	V
Reverse Breakdown Voltage	$V_{_{BR}}$	I _t = 1mA	25	26.6	29	V
Reverse Leakage Current	I _R	V _{RWM} = 24V		<1	100	nA
Trigger Voltage ⁽²⁾	$V_{\rm tr}$	$I_{tr} = 1A$, $t_p = 0.2/100$ ns			30	V
Clamping Voltage ⁽³⁾	V _c	I_{pp} = 4.5A, t_p = 1.2/50μs (Voltage), 8/20μs (Current) Combination Waveform, R_s = 2 Ω		35.8	43.3	V
ESD Clamping Voltage ⁽⁴⁾	V _c	$I_{TLP} = 4A$, $t_p = 0.2/100$ ns (TLP) $I_{TLP} = 16A$, $t_p = 0.2/100$ ns (TLP)		26 31.1		V
Dynamic Resistance ^{(4),(5)}	$R_{\scriptscriptstyle DYN}$	$t_p = 0.2/100$ ns		0.4		Ω
Junction Capacitance	$C_{_{\mathrm{J}}}$	$V_R = 0V$, $f = 1MHz$		4.4	5.5	pF

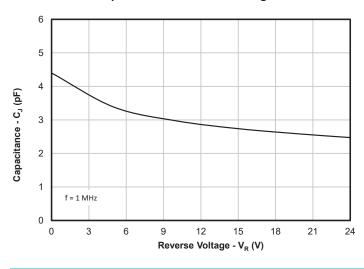
Notes:

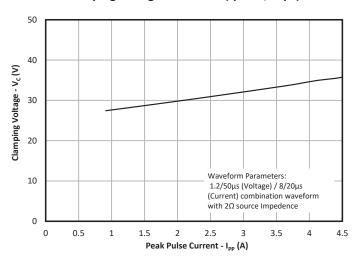

- 1) ESD gun return path connected to ESD ground plane.
- 2) Guaranteed by design, not production tested.
- 3) Measured using a $1.2/50\mu s$ voltage, $8/20\mu s$ current combination waveform, $R_s = 2$ Ohms. Clamping is defined as the clamping voltage after the device snaps back to a conducting state.
- 4) Transmission Line Pulse Test (TLP) Settings: $t_p = 100$ ns, $t_r = 0.2$ ns, l_{TLP} and V_{TLP} averaging window: $t_1 = 70$ ns to $t_2 = 90$ ns.
- 5) Dynamic resistance calculated from $I_{TIP} = 4A$ to $I_{TIP} = 16A$

Typical Characteristics


ESD Clamping (8kV Contact per IEC 61000-4-2)


ESD Clamping (-8kV Contact per IEC 61000-4-2)


TLP Characteristic (Positive Pulse)


TLP Characteristic (Negative Pulse)

Capacitance vs. Reverse Voltage

Clamping Voltage Waveform (tp=1.2/50µs)

Typical Characteristics

Assembly Guidelines

The small size of this device means that care must be taken during the mounting process to ensure reliable solder joints. The figure at the right details Semtech's recommended mounting pattern. Recommended assembly guidelines are shown in Table 1. Note that these are only recommendations and should serve only as a starting point for design since there are many factors that affect the assembly process. Exact manufacturing parameters will require some experimentation to get the desired solder application.

Solder Stencil

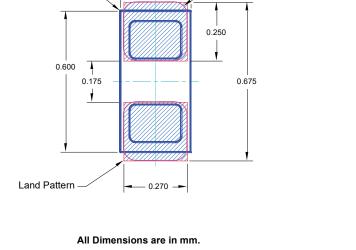
Stencil design is one of the key factors which will determine the volume of solder paste which is deposited onto the land pad. The area ratio of the stencil aperture will determine how well the stencil will print. The area ratio takes into account the aperture shape, aperture size, and stencil thickness. A minimum area ratio of 0.66 is preferred for the subject package. The area ratio of a rectangular aperture is given as:

Area Ratio = (L * W) / (2 * (L + W) * T)

Where:

L = Aperture Length W = Aperture Width T = Stencil Thickness

Semtech recommends a stencil with square aperture and rounded corners for consistent solder release. The stencil should be laser cut with electro-polished finish. A stencil thickness of 0.075mm (0.003") is recommended. A 0.100mm (0.004") stencil may be used, however the stencil opening may need to be increased slightly to achieve the desired area ratio to ensure proper solder coverage on the pad.

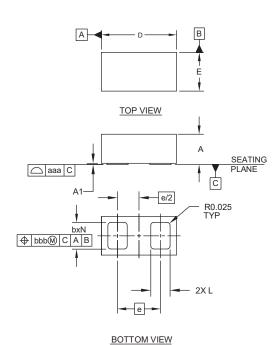

Recommended Mounting Pattern

0.300 -

Component

Stencil opening

Component

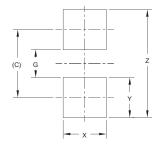

Table 1 - Assembly Guidelines

Stencil opening

Land Pad.

Assembly Parameter	Recommendation
Solder Stencil Design	Laser Cut, Electro-Polished
Aperture Shape	Rectangular with Rounded Corners
Solder Stencil Thickness	0.075mm (0.003") or 0.100mm (0.004")
Solder Paste Type	Type 4 Size Sphere or Smaller
Solder Reflow Profile	Per JEDEC J-STD-020
PCB Solder Pad Design	Solder Mask Defined or Non Solder Mask Defined
PCB Pad Finish	OSP or NiAu

Outline Drawing - DFN 0.60 x 0.30 x 0.25mm-2 Lead



DIMENSIONS				
DIM	MILLIMETERS			
	MIN	NOM	MAX	
Α	0.235	0.250	0.265	
A1	0.000	0.010	0.050	
b	0.200	0.220	0.240	
D	0.580	0.600	0.620	
E	0.280	0.300	0.320	
е	0.355 BSC			
L	0.140	0.160	0.180	
N	2			
aaa	0.08			
bbb	0.10			

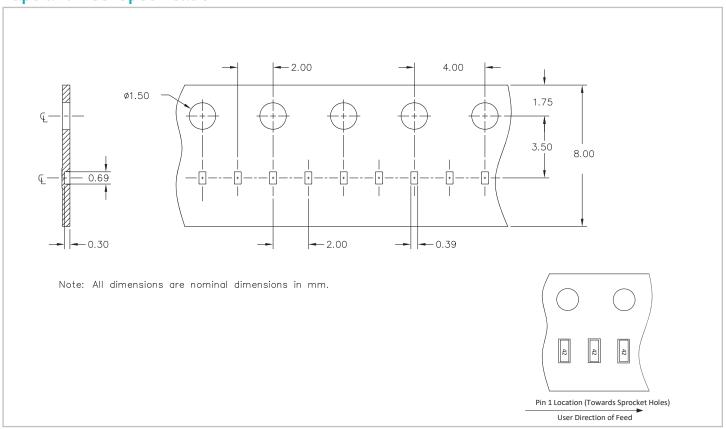
NOTES

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).

Land Pattern - DFN 0.60 x 0.30 x 0.25mm-2 Lead

DIMENSIONS		
DIM	MILLIMETERS	
(C)	(0.425)	
G	0.175	
Х	0.270	
Υ	0.250	
Z	0.675	

NOTES:


- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.
 CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
 COMPANY'S MANUFACTURING GUIDELINES ARE MET.

Marking Code

Note: Device is electrically symmetrical.

Tape and Reel Specification

Order Information

PART NUMBER	QTY PER REEL	REEL SIZE		
HClamp2481ZA.F	15,000	7"		
HClamp and EMIClamp are registered trademarks of Semtech Corporation.				

Important Notice

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

Product features listed in this datasheet may be suitable for "non-safety" applications in Automotive use cases. Information in this datasheet for such applications is provided as a guide only. No safety claim is made in respect of the product described in this datasheet when used in Automotive safety systems or security devices, including systems for controlling vehicles and other transportation equipment; responsibility for achieving safety goals belongs solely to the buyer and/or integrators. Semtech is under no obligation to provide any data regarding safety integration to the buyer or any integrator.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN AUTOMOTIVE SAFETY OR SECURITY DEVICES, INCLUDING SYSTEMS FOR CONTROLLING VEHICLES AND OTHER TRANSPORTATION EQUIPMENT, LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2024